您所在的位置: 首页>人教版>六年级>数学>上册>>教学设计>《比例的基本性质》教学设计1

《比例的基本性质》教学设计1

作    者:
谭老师 编辑:tchtan
信息来源:
本站
查看浏览:
58 次
发布时间:
2018-09-07 13:09:10

详细内容

教材分析

这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是学习比例初步知识的一项重要内容。

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

设计理念

数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。

教学预设

一、认识比例各部分的名称

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: =:5  (2) =

设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)你觉得应该怎样举例呢?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、归纳

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式=,这怎么相乘?(交叉相乘)

设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜数——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。

三、巩固练习,应用比例的基本性质

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5             (1)1.2: 和:5 

(2):和:     (3)和

学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。

(1)先让学生尝试判断,再交流,明确思考方法。

(2)还可以用什么方法来判断?用求比值的方法判断1.2: 和:5能否组成比例可以吗?

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

六(3)班智聪同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?

补问:根据这个乘法等式,一共可以写多少个比例        ?

3、如果a×2=b×4,则a:b=(    ):(    );

   如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

   那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

     6:(  )=5: 4

延伸:如果把 “(  )”改为“x”就是我们下节课要学习的知识:解比例。

设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。

四、分享收获  畅谈感想

这节课,我们学习了什么?我们是怎样探究比例的基本性质的?

五、板书设计

本文仅代表作者观点,不代表一起学习网立场。本文系作者授权一起学习网发表,未经许可,不得转载。如果本文与您的权益有冲突,请马上与我们联系。

精选精彩评论

表情:
用户名: 密码: 验证码: 匿名发表
最新评论

您的浏览历史

    暂时浏览记录!

在线客服 点击这里给我发消息 讨论群 小教之家 微信公众号